Visible‐Light‐Controlled Oxidation of Glucose using Titania‐Supported Silver Photocatalysts

نویسندگان

  • Luigi Da Vià
  • Carlo Recchi
  • Thomas E Davies
  • Nicholas Greeves
  • Jose A Lopez-Sanchez
چکیده

The visible-light-mediated photo-catalytic selective valorisation of glucose using TiO2-supported Ag nanoparticles is shown for the first time. The optimisation of the catalyst composition, substrate-to-catalyst ratio and reaction medium proved that a near total suppression of the mineralisation pathway could be achieved with a selectivity to partial oxidation products and small-chain monosaccharides as high as 98 %. The primary products were determined to be gluconic acid, arabinose, erythrose, glyceraldehyde and formic acid. Under UVA light, the selectivity to organics decreases because of the production of CO2 from mineralisation. A reaction mechanism is proposed based on an α-scission process combined with the Ruff degradation reaction, which explains the presence of the oxidation products, the smaller carbohydrates and formic acid. X-ray photoelectron spectroscopy, UV/Vis spectroscopy and microscopy studies showed the presence of plasmonic 4 nm particles of silver that were oxidised to silver oxide over the course of the reaction, and recycling studies revealed that this was not detrimental to activity.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bactericidal Performance of Visible-Light Responsive Titania Photocatalyst with Silver Nanostructures

BACKGROUND Titania dioxide (TiO(2)) photocatalyst is primarily induced by ultraviolet light irradiation. Visible-light responsive anion-doped TiO(2) photocatalysts contain higher quantum efficiency under sunlight and can be used safely in indoor settings without exposing to biohazardous ultraviolet light. The antibacterial efficiency, however, remains to be further improved. METHODOLOGY/PRINC...

متن کامل

Antibacterial property of Ag nanoparticle-impregnated N-doped titania films under visible light

Photocatalysts produce free radicals upon receiving light energy; thus, they possess antibacterial properties. Silver (Ag) is an antibacterial material that disrupts bacterial physiology. Our previous study reported that the high antibacterial property of silver nanoparticles on the surfaces of visible light-responsive nitrogen-doped TiO2 photocatalysts [TiO2(N)] could be further enhanced by vi...

متن کامل

Visible-light-responsive nano-TiO(2) with mixed crystal lattice and its photocatalytic activity.

Ultraviolet- and visible-light-responsive titania-based photocatalysts were synthesized and employed in the photocatalytic oxidation of NO(x). Sol-gel processes using tetrabutyl orthotitanate and ethanol under acid catalyzed condition and controlled calcination were performed to synthesize titanium dioxide with a mixed crystal lattice of anatase, brookite and rutile phases. The TiO(2) prepared ...

متن کامل

Synthesis of mesoporous TiO2-SiO2-Ag and investigation of its structural and photocatalytic properties under visible light and ultra-violate

In this project, mesoporous titanium oxide-silicon oxide doped by silver (TiO2-SiO2-Ag) was hydrothermally synthesized. Titanium isopropoxide, tetraethyl orthosilicate and silver nitrate were used as precursors for TiO2, SiO2 and Ag, respectively. Initially TiO2-SiO2 mesoporous nanocomposite was synthesized with weight ratios of silica to titania SiO2:TiO2:3:1 via hydrothermal method at 70˚C an...

متن کامل

Mechanochemical Synthesis of TiO2 Nanocomposites as Photocatalysts for Benzyl Alcohol Photo-Oxidation

TiO₂ (anatase phase) has excellent photocatalytic performance and different methods have been reported to overcome its main limitation of high band gap energy. In this work, TiO₂-magnetically-separable nanocomposites (MAGSNC) photocatalysts with different TiO₂ loading were synthesized using a simple one-pot mechanochemical method. Photocatalysts were characterized by a number of techniques and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2016